1 電波による地球環境計測

佐藤 源之 東北大学 東北アジア研究センター

太陽光などの物体表面での反射 熱によって発生する固有の電磁波

•可視光線

- •マイクロ波
- (これらの総称が電磁波)

海洋観測衛星1号「もも1号」(MOS-1)

物質による電磁波の反射と放射

光学センサとマイクロ波センサ

地表の状態・地表利用識別に必要な情報と解析

ハイパースペクトル (多周波情報) ポーラリメトリ (偏波情報)

Landsat TM

Blue band1

Green band2

Red

band3

Pi-SAR

Red:HH Green:HV Blue:VV

<u>L-band,</u> <u>30/08/2001 仙台市</u>

光学センサとマイクロ波センサ

JERS-1は地球の全陸域を観測し、資源探査を主目的に国土調査、農林漁業、環境保全、防災、沿岸監視等の定常観測を行う地球観測衛星。平成4年2月11日に種子島射場より

H-Iロケットで衛星高度568km、回帰日数44日の太陽同期準回帰軌道に打ち上げ。 CENTER FOR NORTHEAST ASIAN STUDIES

Microwave Remote sensing SAR

a)raw data

Raw data

b)correlated data

SAR processed image

JERS-1. ©METI/NASDA

ALOS 2006年1月24日打ち上げ

H-IIA 8th Launch January 2006 (JAXA:宇宙航空研究機構)

ALOS under assembly in Tsukuba Center

http://www.jaxa.jp/missions/projects/sat/eos/alos/index_j.html

ALOS/PALSAR-PRISM-AVNIR2

PALSAR specifications

Observation mode	High resolution	Broad observatio	
		n	
Frequency	L-band(1.27GHz)		
Polarization	HH,VV,HH&HV,VV&VH	HH,VV	
Resolution	10m	100m	
Swath width	70km	250-350km	
Off nadir angle	10-51 degree		
Noise-RCS	Ca23dB		

Optics vs. SAR

-Extensive Coverage and Contemporaneousness Advantages of RS --Periodicity by EOS -Workability

Mt. Merapi, Indonesia, April 29th, 2006

ALOS/AVNIR-2(可視近赤外放射計2型)

ALOS/PALSAR ©METI, JAXA EORC

SAR Remote Sensing by Satellite

ALOS/PALSAR, Japan, January 24, 2006, L-band (Nicknamed as "Daichi".)

-Each sensor can operate Quad polarizations observation. (HH, HV, VH, VV)

TerraSAR-X, Germany, June, 2007, X-band

RADARSAT-2, Canada, March, 2007, C-band

Direct Information provided by Radar Polarimetry

 $\begin{bmatrix} \mathbf{S} \end{bmatrix} = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix} = \left| \sigma^{0} \right| e^{j\phi_{HH}} \begin{bmatrix} 1 & \tilde{S}_{HV} \\ \tilde{S}_{VH} & \tilde{S}_{VV} \end{bmatrix}$ Sinclair Matrix **Scattering Matrix** $\vec{E}(z,t)$

Pi-SAR classification

<u>X-band, 30/08/2001</u> 375m*400m

Induced by Ground Surface Patch

Jong-Sen Lee, Dale L. Schuler, et al. The induced polarization orientation angle shift 0 is represented,

 $\tan\theta = \frac{-\tan\omega}{-\tan\gamma\cos\phi + \sin\phi}$

Where tan ω is the azimuth slope, tan γ is the range slope, ϕ is the radar look angle.

Hiroshi Kimura, et al.

 $\tan\theta = \frac{-\tan\alpha}{\cos\phi}$

Where $tan \alpha$ is the target azimuth angle, ϕ is the radar look angle.

Terrain effect (Orientation angle shift)

Pi-SAR

New R&D for monitoring Earth Environment.

NiCT and JAXA developed Pi-SAR in 1996.

Pi-SAR: Airborne High-resolution Multi-parameter SAR

X-band Main Antenna			X-band	L-band
Diamona Air Sorvice Diamona Air Sorvice Aband Sub Antenna	nond Air Service	Frequency	9.55GHz	1.27GHz
	af -	Wave length	3.14cm	23.6cm
	E	Resolution	1.5m	3m
	X-band Sub Antenna	Observation mode	Polarimetry [HH/HV/VH/VV]	Polarimetry [HH/HV/VH/VV]
	©NICT/JAXA		Interferometry	

> Investigation of the frequency dependence.

Difficulties, such as layover, shadowing, and multi-bounce, etc. In addition, our targets are dihedral structures.

> A model fit for Urban structures.

Residential Area in Sendai

Residential block

L-band, HH-VV, 2HV, HH+VV

Estimated PO Angle θ

X-band, HH-VV, 2HV, HH+VV

Estimated PO Angle θ

Space Borne PolarimetricSAR

- 24-hour Operation
- Detection of Small Changes
- Understanding of the Change of Scattering Mechanism
 - ➤Collapsed Houses
 - Detection of Land Slide
 - Detection of Abandoned Objects

GB-SAR (Ground-Based SAR)

Wide-area observation

Polarimetric scattering from specific targets

Scattering Objects Setup

SAR image

VV of exp#1 on April 19, 2002

桜1.5 GHz

Color Overlay of Cherry at 1.5 GHz red: HH green: VH blue: VV

桜4.5 GHz

Color Overlay of Cherry at 4.5 GHz red: HH green: VH blue: VV

POL-IN-SAR

3-Dimensional Forest Height Representation *E-SAR / Test Site: Oberpfafenhoffen* K. P. Papathanassiou and S. R. Cloude

Conclusion

- Radar polarimetric information has not fully been used
- Classification of targets under resolution
- Qualitative Measurement
- Need more practical applications
- Multiple Platforms-Frequencies-Polarizations (ENVISAT/PALSAR/TerraSAR/RADASAT2)

